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Abstract—The control of lower-limb exoskeletons plays a
crucial role in determining the effectiveness of walking assistance,
but how to generate a reference signal still poses a significant
challenge. Many existing approaches involve offline training
and classifiers or depend on prefabricated models, lacking
the adaptability needed to support diverse users and real-
time scenarios with varying gait cycles. Meanwhile, balancing
intervention on human limbs between compliance and assistance
during learning is still an open problem. To address these
issues, this article proposes a real-time learning method for
walking assistance without classifiers, automatically adapting to
alterations in motion patterns. The control law, based on adaptive
admittance control and the equilibrium state, ensures stable
assistance during learning with intuitive parameter tuning and
allows for switching of gait during assistance. Utilizing selective
memory recursive least squares in a neural network enables
rapid learning and precise prediction of human users’ motion
intention, without pretraining. Experimental results demonstrate
that our approach achieves a prediction error within 6◦ after
half a minute of learning with a prediction ahead time of 120 ms,
outperforming classic approaches. The assistance performance is
consistent despite varied control parameters, indicating a certain
level of robustness.

Index Terms—Equilibrium-based torque control (ETC), gait
prediction, lower-limb assistance, real-time learning, selective
memory recursive least square (SMRLS).
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I. INTRODUCTION

LOWER-LIMB exoskeletons (LLEs) are instrumental
in augmenting human gait, providing crucial support

for individuals with diverse motor impairments [1]. Partial
exoskeletons are typically designed for applications involv-
ing intricate tasks, such as augmenting swift movements or
handling vigorous activities [2]. Therefore, it is essential to
anticipate and accurately estimate the user’s intentions in
advance. Meanwhile, the design of control laws significantly
influences the device’s ability to interact stably and purpose-
fully with both the user and the environment [1], [3], [4].

According to the function of controllers, they are usually
classified into three levels: 1) high; 2) mid; and 3) low [3]. The
high-level controller is responsible for recognizing the user’s
intentions and subsequently translating these intentions into a
reference by the mid-level controller, such as desired position
and velocity. This reference then serves as the input of the
low-level controller. Movement recognition is one of the most
popular methods for the high-level controller which automat-
ically adjusts its behavior based on the user’s movements or
intended movements [5], [6], [7], [8]. To generate a motor
command, which is defined as the detection sublayer in the
mid-level controller [1], current approaches predominantly
include trajectory tracking, assist-as-needed [4] and model-
based methods. Although trajectory tracking is still the most
commonly employed strategy among them [4], other strategies
can be combined with it [9], [10], [11]. Generation of a refer-
ence can be achieved either offline or online. Offline methods
typically rely on extensive pretraining or theoretical models,
demanding significant upfront effort and other methods to
achieve adaptability [10], [12]. Sim2real with reinforcement
learning is also a popular approach in offline training [13],
which relies on learning-in-simulation with musculoskeletal
and exoskeleton models. However, offline training methods
may be difficult to respond to unexpected variations and
highly dependent on the generalization and adaptability of
models used in simulation. In comparison, online methods,
such as adaptive-frequency oscillator or iterative learning
control (ILC) require that the trajectory be periodic or repet-
itive [14], [15], which limits their generalization capability.
Neural network-based learning and estimation is also a popular
method for high-level controller, but its training is usually
computationally demanding. For example, by comparing var-
ious neural network approaches, the computation time for
each sample ranged from approximately 37.6 to 133.5 ms
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in [16]. In practice, the computation frequency, communication
frequency, and control frequency limit each other and lower
control frequency leads to unnatural gait or oscillations during
real-time assistance. Consequently, a major challenge lies in
developing methods to simultaneously train the model and
provide assistance in real-time, achieving both adaptability and
efficiency during operation.

In neural network-based gait prediction methods, frequent
transitions among different gait behaviors are required by the
high-level controller during locomotion [3], [17], [18], [19],
[20], which are usually achieved by classifiers or threshold-
based methods [1]. Popular approaches include finite state
machines [21], [22], [23] and decision trees [24], [25], [26]
for gait phase classification. However, trained models still
tend to underperform when applied to new individuals or
motions [27], highlighting challenges in adaptability and
generalization across different individuals in automated pat-
tern recognition through machine learning. Moreover, most
classifiers or gait training approaches necessitate prior offline
training [3]. Meanwhile, another significant challenge in real-
time learning is data preprocessing, which includes data
filtering. It is constrained by most forward (real-time) filters as
they can only process data collected before the current sam-
pling moment, resulting in the data lag in the processed data.
One approach to address this problem is through predictive
compensation, as in [28].

In addition to the aforementioned classification issues, the
control law is a crucial component for the mid-level controller.
One of the most commonly used methods is admittance con-
trol [3], which is proposed to mitigate the undesired dynamics
imposed by LLEs. However, for classic admittance control,
fixed parameters are insufficient to endow it with adaptability.
Some researches therefore delve into the implementation of
adaptive admittance control, such as [29], [30], and [31]. In
real-time learning scenarios, there is a training phase where
the exoskeleton needs to be compliant with the movement
of the human lower limbs rather than providing assistance.
This implies that the mid-level controller needs to adaptively
balance this intervention on humans.

In addressing the challenge of transitioning between differ-
ent gait patterns, this article focuses on motion gait within
nested cycles, such as ascending stairs, aiming at real-time
adaptability without relying on an explicit classifier. We inte-
grate selective memory recursive least squares (SMRLSs) [32]
with the radial basis function neural network (RBFNN) for
supervised learning to develop a novel high-level controller,
resulting in faster and improved transitions between different
motion patterns compared to existing approaches. We tend
to implement real-time learning to cope with unpredictable
variations to enhance adaptability. Furthermore, equilibrium-
based torque control (ETC) is proposed for the mid-level
controller, using adaptive admittance control to achieve
stable and adaptive assistance by controlling interaction
torques.

The contributions of this article can be summarized as
follows.

1) We adopt SMRLS for high-level controller to achieve
faster real-time learning for assistance during the

variation of motion, especially for scenarios within
nested cycles.

2) The proposed real-time learning system allows filters
to use both preceding and succeeding information of
the current sample. Better filters before training can
significantly improve performance, not only eliminating
the delay problem caused by many real-time filters, but
also optimizing the training samples to make the trained
weights reliable.

3) To further transfer the prediction from the high-level
controller into a balanced interaction, ETC with adaptive
admittance control is proposed to modulate the magni-
tude of interaction torque intuitively and smoothly. It
automatically balances the intervention on human limb
between training and assistance phases, improving the
LLE’s adaptability.

The structure of this article is organized as follows. The
scenario and system modeling are presented in Section II while
Section III introduces the learning method of SMRLS-RBFNN
as the high-level controller. Section IV provides the analysis
of the system and the derivation of ETC as the mid-level
controller. The results with analysis are depicted in Section V
and Section VI by simulations and experiments respectively.
Finally, Section VII concludes the contributions and discusses
some limitations of this study.

II. SYSTEM STRUCTURE

The difficulties in designing exoskeletons arise from the
necessity to optimize various aspects of the mechatronic
system, such as its flexibility, weight, and power [33]. The
proposed LLE system aims at assisting able-bodied individuals
in walking more efficiently and effortlessly, with online learn-
ing and adaptation. To enable real-time walking assistance,
a comprehensive LLE system is developed, incorporating
dynamic modeling, hardware architecture, and the multilayer
control strategy. The system features a high-level controller
that operates independently of classifiers for human motion
estimations, while the mid-level controller dynamically bal-
ances intervention in the human lower limbs between the
stages of incomplete learning and assistance, converting the
high-level controller’s outputs into the appropriate assistance
torque for the lower limbs.

A. Design of a System

1) Hardware Architecture: The structural configuration of
the LLE system is illustrated in Fig. 1(a). In this article,
a single-leg exoskeleton prototype is developed to evaluate
the feasibility of the proposed control algorithm. The device
incorporates two degrees of freedom (DOFs), specifically
targeting at the hip joint. A hinge-like mechanism is imple-
mented to facilitate abduction and adduction movements,
while the design also enables thigh flexion and extension.
This configuration provides the essential kinematic capabilities
required to accommodate the complex motion patterns of the
hip joint during locomotion.

The waist is composed of a circular structure that can rotate
between 0◦ and 225◦, with embedded straps for fixation. A
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Fig. 1. Structure of LLE system. (a) Components overview of wearable LLE. (b) Electromechanical strcutre with 3-D model.

portion of the LLE’s weight is transferred to the shoulders by
means of a wearable vest integrated into the system, which
helps redistribute the load through the garment, enhancing
user comfort. The complete exoskeleton, excluding power
components, weighs approximately 2.42 kg with an extra
weight of 1.94 kg of the battery and circuit (4.36 kg in total).
Soft foam is added at contact positions around the waist,
thighs, and back to enhance user comfort. Different screw
holes are applied to the structure, allowing adjustments based
on individuals. The waist fixation structure extends downward,
connecting to the motor through hinges, ensuring that the
center of the motor is fixed at the height corresponding to
the hip joint. Consequently, the pivot of the motor aligns with
the hip joint instead of the waist, causing a shift of the motor
when receiving a significant torque. This shift might compro-
mise assistance performance and influence data collection. To
reinforce the stability of the structure, additional components
have been added, extending from the waist upward to the back
and integrated into the straps.

2) Electromechanical Structure: The motors employed in
this study are sourced from the MIT Cheetah robot, featuring
a built-in gear ratio of 9:1 and requiring 24 V power supply.
The stall torque and nominal torque are 22 Nm and 11 Nm,
with maximum and rated speeds of 230 rpm and 130 rpm,
respectively. The motors then transmit data to the STM32
C8T6, which is regarded as the low-level controller, via
CAN communication by TJA1050 module. Subsequently, the
processed data is transferred to the Jetson Nano B01 for
training through serial communication. The user carries a 24 V
power supply battery in the backpack, with a maximum current
of 30 A. Power is then provided directly or indirectly to
microcontroller units (MCUs) and the actuator through over-
current protection modules and a voltage DC-DC converter.
The corresponding circuit structure can refer to Fig. 1(b).

B. Dynamic Model of Interaction System

In this article, we assume that there is a relative motion
between the human leg and LLE (see Fig. 2). In the absence
of external interactions, both of them ideally follow the

Fig. 2. Schematic of different angles and errors.

feedforward dynamic model as

τh0 = M(qh)q̈h + C(qh, q̇h) + G(qh) (1)

where M, C, G are, respectively, the inertia, Coriolis and
centrifugal, gravitational matrices, qh represents the rotation
angle of human limb.

More specifically, the dynamic model of human can be
regarded as a feedforward model with a PD feedback term
which leads to the variation of the human limb motion

τh = τh0 + KPheh + KDhėh (2)

where eh represents the tracking error between actual human
limb angle and desired angle and τh is the torque exerted by
human.

For human-exoskeleton interaction, we conceptualize it as
a high-coefficient spring and damper connected between the
human limb and the LLE, as below

τl = τh0 + KPheh + KDhėh − τi (3)

τi = KPiei + KDiėi (4)

ei = qe − qh (5)

where KPh, KDh, KPi and KDi are coefficients of PD controller,
τi is the interaction torque between the LLE and human limb
(applied to the human limb from the LLE), qe represents the
angle of the LLE and τl is the torque exerted by human with
the assistance of LLE.
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Although qe can be obtained accurately, the measurement
of qh is inaccurate as human limbs are soft and the gyroscope
is difficult to adapt to the size of different people’s limbs.
Besides, ei is small, and therefore the data accuracy is insuf-
ficient to meet subsequent computation requirements. Hence
only qe is available for the controller design, detected by the
gyroscope or the inner encoder of motors.

The PD controller applied to the motor of the device
follows:

τe = KPeee + KDeėe + τE (6)

ee = qde − qe (7)

where KPe and KDe are the PD gains, ee is the tracking error
of the motor, qde is the desired angle of the control objective
and τE represents the offset torque of the LLE. Therefore,
the control problem of the LLE becomes how to design the
reference trajectory qde of the LLE. A feasible solution is to
make the trajectory of qde ahead of the expected trajectory of
human lower limb movement as

qde(t) = qh(t + t�) (8)

where t� is ahead time of the prediction.
In the learning stage where the neural network output is far

from the expected trajectory, human needs to guide the motion
of the entire system, and it is difficult to change the motion
of the LLE only with (6). Therefore, admittance control is
applied into the system as

DA�qd + KA�q̇d = −τi (9)

where �qd = qde − qdn is the altered angle according to
admittance control, and qdn is the output of predicted angle
from the neural network. The inertia term of the admittance
control is ignored in (9) considering the accuracy of the sensor
and the derivation in the next section.

The whole system can be realized as two spring-damping
models with admittance control, which is illustrated in Fig. 2.

Based on the above system and dynamic modeling, appro-
priate methods should be introduced into the mid-level and
high-level controllers, which are discussed in details in the
following two sections.

III. REAL-TIME LEARNING BASED ON SMRLS-RBFNN
(HIGH-LEVEL CONTROLLER)

In order to improve the adaptability of real-time assistance,
the high-level controller is required to quickly adapt to
different trajectories with alternating cycles. Without the clas-
sifier, SMRLS-RBFNN is proposed to produce the reference
trajectory by gait prediction.

A. Radial Basis Function Neural Network

The RBFNN, which has the capability of universal approx-
imation, is a lightweight structure neural network with one
hidden layer. According to [34], it is relatively less com-
putationally demanding, so it is widely used in various
applications [35], [36], [37].

In this article, the Gaussian function is used as the radial
basis function

φi(χ) = exp

(
−‖χ − ci‖2

2σ 2

)
(10)

where i = 1, 2, . . . , N, N is the number of neurons, χ ∈ R
l

is the input vector, ci ∈ R
l is the center of each radial basis

function and σi ∈ R is the standard deviation which represents
the receptive field width of φi(χ).

The output of the RBFNN can be described as

fNN(χ) =
n∑

i=1

wiφi(χ) = WT�(χ) (11)

where fNN(χ) ∈ R is the output, W =
[w1, w2, . . . , wN]T ∈ R

N is the weight vector, �(χ) =
[φ1(χ), φ2(χ), . . . , φN(χ)] ∈ R

N is the regressor vector
composed of radial basis function φi(χ).

For the scenario of this article, considering the learning from
t0 to t1, the optimal weight vector is

W∗ = arg min
W∈RN

{∫ t1

t0
‖qh(t) − WT�(t − t�)‖dt

}
. (12)

Common online learning methods used for RBFNN include
stochastic gradient descent (SGD) and recursive least squares
(RLSs). Although the RLS method uses the forgetting factor
to enhance the sensitivity to new samples, a phenomenon of
forgetting past data is inherent [32], as briefed in the following
two sections.

B. Recursive Least Squares

The classic RLS method [38], [39] is usually implemented
with forgetting factor λ as

W(k) = W(k − 1)

+ P(k)�(x(k))
[
y(k) − WT(k − 1)�(x(k))

]
P−1(k) = λP−1(k − 1) + �(x(k))�T(x(k))

�(x(k)) = [φ1(x(k)), φ2(x(k)), . . . , φN(x(k))] (13)

where P(k) is the covariance matrix at sampling time k, λ ∈
(0, 1] is the forgetting factor during the recursive process and
x(k) and y(k) represent the input sample and output sample,
respectively.

C. Selective Memory Recursive Least Squares

Considering the scenario of real-time LLE assistance, it is
necessary to rapidly and accurately obtain the expected gait
prediction after the time of t�. Nevertheless, the classic RLS
in previous section will gradually forget the previous training
sample in real-time learning because of the forgetting factor λ

in (13). Even when λ = 1, the convergence will become slow
as new samples are learned. Therefore, a derivative method of
RLS named SMRLS is proposed [32]. Compared with RLS,
it has the selective-memory term as the additional data input,
leading to faster convergence and generalization ability.
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Fig. 3. Normalization and partitioning example of the the input space.

1) SMRLS-RBFNN:

W(k) = W(k − 1)

+ P(k)�(x(k))
[
y(k) − WT(k − 1)�(x(k))

]
− P(k)�(γa(k − 1))

[
ϕa(k − 1)

− WT(k − 1)�(γa(k − 1))
]

P−1(k) = P−1(k − 1) + �(x(k))�T(x(k))

− �(γa(k − 1))�T(γa(k − 1)) (14)

where γa(k − 1) and ϕa(k − 1) represent the last synthesized
input sample and output sample from the normalized range,
respectively.

2) Normalization and Partitioning: The input range of
SMRLS-RBFNN is normalized into a unit hypercube of the
input space, such as [−1, 1] for a 1-D input space. An example
of input synthesis is shown in Fig. 3, where the trajectory
is illustrated as the angle-speed plot phase (ASP). Current
samples will then be partitioned into different lattices and
synthesized as the new reference sample (γa(k), ϕa(k)) for the
sample pairs in the corresponding lattice. The subscript a =
1, 2, . . . , NP indicates the corresponding lattices of the current
sample. The synthesis of (γa(k), ϕa(k)) can be accomplished
through various methods. This article adopts a substitution
approach that replaces (γa(k), ϕa(k)) by the normalized and
partitioned sample from (x(k), y(k)) directly.

Generally, SMRLS can effectively alleviate the forgetting
problem in classic RLS. The additional term will give balanced
weight to samples in all lattices and works better in periodic
variation of motion patterns.

D. Simultaneous Learning and Prediction

For the proposed method in this article, real-time learning
is used for gait prediction in high-level controller, where they
occur simultaneously. To generate the initial control objective,
supervised learning based on SMRLS-RBFNN is conducted
with both current and previous angle and angular velocity.
Define na as the number of samples for the prediction and
the ahead time of the prediction is therefore na�t. For the
LLE system in this article, x(k) is represented by qe(k − na)

and q̇e(k − na), which are the angle and angular velocity of
previous na moments, while y(k) is represented by qe(k) and
q̇e(k). Therefore, at the current moment, the mapping between

samples in previous moment and the current samples is trained
in neural network as

fNN(x(k)) = WT(k)�(x(k)) (15)

WT(k)�(y(k)) = [
qdn q̇dn

]T (16)

where fNN is solved according to (12) and (14) for learning,
the state

[
qdn q̇dn

]T is obtained by the prediction with neural
network. Initial states of the angles, i.e., q = 0, correspond to
the angles observed in the natural standing or hanging pose of
the legs.

Meanwhile, real-time calculations using forward filters usu-
ally suffer from data lag issues. In the training of neural
networks, even small fluctuations can cause significant training
differences, as the entire training data set is affected. Moreover,
the lag in data undoubtedly has a considerable impact on
the assistance effect. Benefiting by the training approach
involving forward prediction, both preceding and succeeding
data of input samples can be collected and used in the filter
in this article, leading to a better filtering effect on input
samples.

The sliding window filter is used in this article. Define xf as
a (2na + 1)×2 matrix which includes the angles and angular
velocities of 2na+1 previous samples. The final filtering result
at the current time is Wf xf , where Wf is the weight matrix
and the weight of the central sample is Wf

(na+1).
To ensure the weight distribution of the filter used is linearly

proportional from edges to the center and the sum of them
equals 1, the first element in weight matrix Wf

1 is defined as

Wf
1 = 1 + Wf

na+1

na + 1
− Wf

na+1 (17)

and Wf is positive, which means Wf
na+1 < (1/na).

Therefore, each element in Wf is defined as

Wf
i =

{
Wf

1 + (i − 1)df , i < na + 1

Wf
na+1 − (i − na − 1)df , i≥na + 1

(18)

where df = [(2na + 1)Wf
na+1 − 1/(na + 1)] and Wf is settled

once the central weight Wf
na+1 is defined.

Moreover, the sliding window filter integrates the
information of a period of trajectory into each training
sample.

IV. MID-LEVEL CONTROLLER OF REAL-TIME

ASSISTANCE

Even based on relatively accurate intention estimation,
providing appropriate assistance remains a problem. The
mid-level controller should balance the interaction torque
during motion alternation and the assistance torque when the
motion stabilizes. Thus, the ETC with adaptive admittance
control is proposed in mid-level controller for adjustments
of the generated trajectory based on SMRLS-RBFNN sub-
sequently. The desired position and velocity are then sent
to STM32 C8T6 as the low-level controller. The block dia-
gram of the structure of the control system is illustrated
in Fig. 4.
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Fig. 4. Block diagram of the control system. The learning and prediction of
angle and angular velocity are conducted in high-level controller simultane-
ously. The desired position and velocity are then generated through ETC in
mid-level controller for low-level controller with PD control.

A. Equilibrium-Based Torque Control

After obtaining the prediction results through the RBFNN,
the controller also needs to interpret qdn and q̇dn to achieve
the desired assistance. In the early stages of learning or when
human desires to change their current motion, the LLE should
minimize excessive intervention on the human body. In the
assistance stage, the LLE will assist human movement with
τi. Thus, it is essential to ensure that the control laws of the
mid-level controller can adapt to both stages.

Although defining a torque threshold can address this issue,
the adjustment of the interaction torque needs to be continuous
and smooth. According to the model in (3), (6), and (9), there
exist equilibrium conditions that satisfy τi = τe − τE where
the torque provided by the human is exactly offset by the
resistance of LLE, resulting in a static balance. Therefore

KPeee0 + KDeėe0 = KPiei0 + KDiėi0 = τi0 (19)

where ee0, ei0 and τi0 are the particular coefficients and torque
in the corresponding equilibrium conditions. Define �qne =
qdn − qe as the initial ahead angle. During the operation, the
direction of τi0 is defined as sgn(�qne) with the magnitude of
|τi0| as the motion direction varies.

B. Adaptive Admittance Control

The ahead angle �qne varies in different moments with
variable velocity. Moreover, when the legs are going to move
oppositely, this difference inevitably decreases. Hence the
training sample of the trajectory continuously changes with the
invariant and relatively small coefficients in admittance control
and human needs to retrain it continuously with effort. In
this case, the variable parameters in admittance control based
on (4), (6), and (9) are required.

To address the issue of interaction torque requirement in
admittance control with an uncertain ahead angle, the same
influence of interaction torque τi0 on �qd with one certain
equilibrium state is required. In this sense, τi0 can be also
regarded as a reference tolerance for interaction. Once the
interaction torque τi reaches τi0, human limb and LLE will
achieve the equilibrium condition.

Define ρe0, DA0, KA0, ee0, and �qd0 as the corresponding
parameters in an equilibrium state. Without detecting ei, once
τi0 is defined, we have{

τi0 = KPeee0 + KDeėe0
−τi0 = DA0�qd0 + KA0�q̇d0.

(20)

By replacing ee0 and �qd0 with qde0 − qe and qde0 − qdn,
there are still four unknown parameters qde0, q̇de0, DA0 and
KA0. For easier computation, the internal parameters in (4), (6),
and (9) can maintain the same proportion as{

τi0 = KPe(qde0 − qe) + KDe(q̇de0 − q̇e)

−τi0 = ρaKPe(qde0 − qdn) + ρaKDe(q̇de0 − q̇dn)
(21)

where ρa illustrates the same proportion with the human-LLE
interaction model and ρaKPe = DA, ρaKDe = KA.

In this case, only ρa, qde0, and q̇de0 are left unknown. To
obtain DA0 and KA0, only ρa is required instead of qde0 and
q̇de0. The first line in (21) can be written as

τi0 + KPeqe + KDeq̇e = KPeqde0 + KPeq̇de0 (22)

where the left-hand side is completely known. Then we
substitute (22) into the second line of (21)

ρa = τi0(KPeqdn + KDeq̇dn − KPeqe − KDeq̇e − τi0)
−1 (23)

where τi0, KPe and KDe are predefined, qdn and q̇dn are output
from the neural network and qe and q̇e can be obtained by
motor drive. Replace qdn − qe with �qne, thus DA0 and KA0
are

DA0 = KPeτi0(KPe�qne + KDe�q̇ne − τi0)
−1 (24)

KA0 = KDeτi0(KPe�qne + KDe�q̇ne − τi0)
−1. (25)

However, ρa may be equal to or even become negative when
τi0 exceeds KPe�qne + KDe�q̇ne in some cases, causing DA0
and KA0 to become infinite or negative. If KPe�qne +KDe�q̇ne

is treated as a virtual torque τn against τi0, the boundary is
defined as

τn =
{

KPe�qne + KDe�q̇ne, τn > ρeτi0
ρeτi0, τn ≤ ρeτi0

(26)

where the coefficient ρe ∈ (1,+∞) defines the ratio of
boundary between τn and τi0. In addition, to prevent equipment
damage, it is necessary to establish a minimum value for ρa.

For the above system, KPe and KDe also limit the maximum
value of DA and KA. Higher parameters will allow a larger
range of variation in DA and KA. From a physical perspective,
designing smaller motor control parameters KPe and KDe

aims to provide less assistance, implying smaller interaction
forces in the corresponding scenario. In such cases, it is
logical to have smaller admittance parameters to facilitate
easier trajectory variation through τi. Limiting their ranges
by introducing ρa instead of DA and KA directly ensures that
the range of variation in the admittance coefficient is self-
adaptive, rather than requiring manual tuning by observing the
experimental data.

V. SIMULATION

In the simulation, human movement is generated by (2).
Two reference trajectories are defined as

qr =
{

62◦ π
180◦ sin (2π t) (n − 1)T≤t < 0.5nT

18.6◦ π
180◦ sin (2π t) 0.5nT≤t < nT

(27)

where T = 25 is the total period of the larger cycle and
n = 1,. . . , N. The motion changes between two types of
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Fig. 5. Simulation results in open-loop system. To achieve the ahead prediction time as 100 ms, KF 1© reduces the sampling rate while KF 2© performs
iterative prediction. (a) Prediction results when the ahead time is 100 ms. (b) Comparison of prediction results of SMRLS and RLS when the ahead time is
400 ms. (c) Prediction error in (a). (d) Prediction error in (b).

trajectory in qr, which simulates the scenarios of constantly
ascending stairs. According to [40], the range of human gait
frequency (per minute) during walking is generally 52–82 Hz.
The dominant frequency of both trajectories is 60 Hz which
is consistent with it. The sliding window filter will not be
implemented into simulation as the data is generated ideally.

The other parameters are set as: the leg is regarded as a mass
point with mh = 12 kg, while the mass of LLE is regarded
as me = 0.5 kg. The length of leg l = 0.5 m (between center
pivot and the mass point).

The other control parameters are set as follows: KPh = 200,
KDh = 50, KPe = 32, KDe = 8, KPi = 100, and KDi = 25.
The angular acceleration is calculated from angular velocity
by transfer function as (1.02s/[0.2s + 1]).

For RBFNN settings, the number of nodes is 25 (5 × 5
for angle and velocity respectively) and σ = 0.35 after
normalization to [−1, 1]. The data of angle and angular
velocity are sampled into 100 points, respectively, in SMRLS,
which means it is divided into 10000 lattices for previous
recording. To avoid negative effects caused by the neural
network during early training, it only produces output to the
system when t > 10 s. The forgetting factor λ = 1 for RLS.

The following prediction methods for the trajectory are
considered for comparison.

Method-1: The proposed method with SMRLS-RBFNN.
Method-2: RLS-RBFNN.
Method-3: Model prediction with Kalman filter (KF), where

the measurement matrix is

[
1 0
0 0

]
, the transition matrix is[

1 5�t
0 1

]
, and the state vector is

[
q
q̇

]
.

Method-4: ILC [41]. Each period of ILC is set as 1 s and
the sample frequency is set as 50 Hz (20 ms).

A. Open-Loop System

This section shows the training results without interaction
feedback to the control system, which compares results of
different methods for human intention prediction in ideal
cases.

As shown in Fig. 5(a), ILC cannot converge appropriately
with nested periodic variations even though this kind of

Fig. 6. Interaction torque with ILC method.

variation is very common in ordinary motion. As the learning
gain is relatively high, fluctuations can be clearly observed
even with a 2-order sliding window filter. Fig. 6 further
indicates that the interaction torque is gradually converging,
but the trajectory enters the next subperiod before it fully
converges, so it does not work successfully. Although [42]
proposed a method to improve the adaptability of ILC in
lower-limb assistance, it is subject to the same problem of
ILC in nested period scenarios, especially when the variation
is rapid and regular.

For the fixed model with KF, two different approaches
are attempted. The first one involves maintaining the same
sampling period as other methods (20 ms) but iterating
predictions for five times to achieve the same ahead time
(100 ms). The second approach involves setting the sampling
period exactly equal to the lead time. It is obvious that both
approaches cannot predict the trajectory well. This is partially
due to the lag problem caused by KF itself. Besides, due to
the limitation of the fixed linear model, it lags when the speed
is fast and overestimates at low speed. The tracking errors are
shown in Fig. 5(c), which shows the large error of the rest
method compared with RLS and SMRLS.

Although SMRLS is better than RLS in ahead time of
100 ms, the difference is not significant in lower ahead time
(100 ms). Hence Fig. 5(b) illustrates the difference in higher
ahead time (400 ms). During the first transition (13.5–17 s),
SMRLS converges to the reference faster, though the sample
of this motion is new to both neural training methods, which
shows better generalization of our proposed method. During
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the subsequent first return of motion (26–29 s), although RLS
method converges slightly better in the first wave peak, it
consistently fails to fully converge to the reference trajectory
and exhibits significantly slower convergence in subsequent
iterations. The tracking errors of both methods are illustrated
in Fig. 5(d), showing that SRMLS performs better than RLS
with larger ahead of time.

VI. EXPERIMENT

In this section, only RLS will be used for comparison as the
other prediction methods obviously show poor usability in the
simulation that might damage the LLE device. Similar with
the simulation, the neural network provides output after 10 s
of training while the actuator will not assist until 12 s. The
sampling, communication and computation frequencies below
are all set as 66.7 Hz (�t = 15 ms). The data are sampled
into 100 points and the number of nodes in RBFNN is 25
(5 × 5) and σ = 0.4 after normalization to [−1, 1]. In order to
demonstrate adaptability of the proposed method, all datasets
in experiments do not undergo pretraining, which means the
initial weight vectors W of RBFNN are all set as zero. The
forgetting factor λ = 1 for RLS. The normalization range of
angle is set as [−0.2, 1.2] while the normalization range of
angular velocity is set as [ − 2, 2]. The data in the experiment
are collected from a human subject who has no knowledge
about the research conducted. In the initialization of program,
the subject is asked to maintain a natural standing posture,
with their legs perpendicular to the ground. The angle of motor
drive is then calibrated to 0.

1) Scenario Setting: This experiment primarily focuses on
the scenario of ascending stairs. Typically, humans do not
maintain a constant stair-climbing state but alternate between
climbing stairs (CS stage) and level walking (LW stage) after
ascending a flight of stairs. This movement involves a nested
periodic variation of motion patterns, requiring a continuous
transition of lower limb motion.

For evaluation purposes, the stairs in this experiment are
emulated by a single step with a height of 17.5 cm as shown
in Fig. 7. As the experiment predominantly focuses on the
movement of one leg, the subject will repeatedly ascend this
step using their left legs, mimicking the downward stepping
motion of one leg during CS stages, and then shift their
center of gravity to the right leg while bending the left leg to
simulate the lifting motion when ascending stairs. Throughout
this process, the contact position between the left leg and the
stair will remain constant. After completing several cycles of
these actions, the subject will move away from the step and
walk on flat ground for a short distance, and then return to the
step again, commencing the next cycle.

A. Open-Loop System

This section shows the offline training result with SMRLS
and RLS, where the training samples are collected from one of
the closed-loop experiments. Compared with the simulation,
even within the same stage, samples include disturbance and
noise, which requires better generalization and faster adapt-
ability. However, the normalization range of RBFNN is set to
fit in with the input sample range as offline training, which

Fig. 7. Two motion cycles in the scenario of ascending stairs. The left figure
shows the first stage of stair climbing and the right figure shows another
stage of level walking, while the motion of subject switches between two
patterns. The motion of CS stage involves a single step, simulating the action
of ascending stairs by stepping up and down.

is different from the closed-loop experiment. The number of
samples for ahead training na is 8, which means the ahead
time of prediction is 120 ms.

The comparison of the forward filter and sliding window
filter is shown in Fig. 8. During this experiment, the sub-
ject initially performed the stair-climbing action until the
system reached a relatively stable state before transitioning
to an alternative motion. The approximate time intervals
for the CS stages were: 58–75 s and 87–103 s, while
the intervals for LW stages were: 75–87 s. According to
Fig. 8(a), evidently, although the convergence of all methods
after switching motions gradually improves with the training,
the performance of RLS is poor. In the initial transition,
SMRLS’s superior accuracy in prediction can be attributed
to its better generalization. However, during the first time of
switching back, a noticeable gap between the two methods
is observed, indicating that our method benefits from its
selective-memory capability. For the derivative methods, a
significant phase difference occurs using the forward filter.
The forward filter introduces data lags, and when used for
training input samples, it effectively increases the time interval
between input and output samples. Consequently, when using
the trained mapping, it leads to a more advanced phase of
output from the corresponding input. The prediction error
might suddenly increase after the transition of motion, but
SMRLS can rapidly reduce the prediction error back to a lower
magnitude according to Fig. 8(b). The average error after 20 s
of program execution is shown by Table I. SMRLS method
with forward filter even performs worse than RLS mainly due
to its phase difference. According to results, the proposed filter
not only reduces fluctuations, but also reduces prediction error
as these subtle fluctuations lead to poorer training samples,
thus affecting the overall training effectiveness of the entire
dataset, in the sense of convergence and generalization.

B. Assistance in Climbing Stairs (Closed-Loop System)

This section will demonstrate the overall assistance
performance of the entire system. Merits and drawbacks
of methods will be mainly manifested through interaction
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Fig. 8. Comparison of experiment in open-loop system. (a) Predicted angle when the ahead time is 120 ms. (b) Prediction error where translucent curves
show the raw data while opaque curves show the data processed by filter.

TABLE I
MEAN OF PREDICTION ERROR

torques. The derived ETC will also be compared with fixed-
parameter admittance control and PD control. Experiments are
conducted using varied impedance parameters in PD control,
including both larger and smaller settings. This was employed
to elucidate results across diverse magnitude requirements for
assistance torque, thereby offering insights into the system’s
performance under different conditions.

1) Settings: The number of samples for ahead training na

is 12, which means the ahead time of prediction is 180 ms.
As mentioned in the description of open-loop experiment, the
first switch in motion mode occurs when the subject perceives
that it is relatively stable. For the limitations of ETC in all
experiments, ρe = 1.01 and ρmin = 0.4.

When lowering the leg at a slow speed, the proposed
method will fail to provide assistance but introduce resistance.
However, this issue tends to be mitigated in the stair-climbing
scenario. Therefore, in this experiment, the distance when the
leg is lowered to make contact with the step is disregarded,
assuming that a person immediately makes contact with the
step upon lowering the leg. For the ideal assistance of ordinary
walking (LW stage), the interaction force should be backward
only when in contact with the ground as well, and offering
forward assistance during other phases. However, there is
relatively less contact with the ground during LW stages,
which means the movement of legs suspended and lowering
cannot be ignored.

The magnitude of torque for assistance is mainly restricted
by Kpe, Kde and the ahead time of prediction. In this exper-
iment, the performances of ETC, admittance control and PD
control policy in relatively higher assistance parameters are
investigated, where Kpe = 45, KDe = 5 and τi0 = 4.0 Nm.
For admittance control, DA = 20 and KA = 2.5, while PD
control can be interpreted as admittance control with infinite
parameters. For the relatively smaller assistance, KPe = 20,
KDe = 3. The parameters of admittance control remain the

same as in high assistance conditions (DA = 20 and KA = 2.5
for admittance control). The equilibrium torque of ETC is set
as τi0 = 4.0 Nm and τi0 = 1.7 Nm in two conditions, which
represent the maximum desired assistance torque of 4.0 Nm
and 1.7 Nm, respectively.

2) Interaction Torque Comparison With Control Laws: To
highlight the contribution related to the control law in this
article, the results using ETC, admittance control and PD
control in CS stages are shown in Fig. 9. For clear demonstra-
tion, curves of torque are scaled in time domain to normalize
different cycles.

Fig. 9(a) shows the results using the ETC and admittance
control in higher assistance condition. It is clear that ETC
provides smoother result which indicates more stable assis-
tance. This is also related to its better adaptation. For example,
the fixed parameters of admittance control used in this article
are relatively low in such a requirement of larger assistance
that little force will cause larger �qd (variation of qde),
which easily leads to more fluctuations. Due to the learning
of RBFNN, those poor samples of fluctuation will be sent
back for learning again as a vicious circle. In addition, the
results of the current trajectory qe, the predicted trajectory
from RBFNN qdn and the interaction torque τi using the classic
PD control are presented in Fig. 10, which indicates that
PD control cannot even work successfully in this condition.
Higher parameters in PD control represent larger upper-limit
of assistance torque, which however needs admittance control
for movement compliance. Although the training in RBFNN
is generally completed within 12 s and it provides acceptable
assistance within two initial steps (12–14 s), the movements
can be also different even in the same motion stage, which
causes poor and rigid assistance.

Admittance control with these fixed parameters and PD
control works in lower assistance requirement as shown in
Fig. 9(b), which also illustrates the results of ETC with τi0 =
4.0 Nm and τi0 = 1.7 Nm respectively. However, without
tuning of other parameters, the magnitude of interaction
torque using admittance control decreases as PD parameters
decrease, while ETC with τi0 = 4.0 Nm still generally
maintains the interaction torque in 4.0 Nm as before. Although
sligtly smaller than that in Fig. 9(a), PD control also restricts
the magnitude of torque within 4.0 Nm as the upper-limit.
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Fig. 9. Results of different control methods, where the parameters τi0 = 4 Nm and τi0 = 1.7 Nm of ETC are highlighted by blue and green background
regions respectively (Curves are scaled horizontally to match different cycles). (a) Results of ETC and classic admittance control in larger impedance setting.
(b) Interaction torque results of ETC (with two different settings), admittance control and PD control in lower impedance setting.

Fig. 10. Poor and disordered assistance using PD control in larger impedance
setting.

Meanwhile, ETC with τi0 = 1.7 Nm generally restricts the
interaction torque in 1.7 Nm as a comparison, which means
it is easier and more intuitive to adjust the assistance torque
with ETC and can better adapt to changes caused by the rest
settings.

3) Comparison Between SMRLS and RLS: The results with
SMRLS and RLS both tend to achieve a relatively stable state
after a period of training, as shown in the simulation with
Fig. 5(a), with fast convergence. Although the prediction error
with RLS is larger after convergence, this subtle difference is
not apparent in experiments. Therefore, the difference between
SMRLS and RLS is mainly reflected in the early stage where
the learning is not complete.

In Fig. 11, the examples of segment with SMRLS and RLS
from the first transition into the LW stage to the second tran-
sition into it are depicted. The corresponding prediction error,
which is processed by the sliding window filter with a window
size of 150, is presented in Fig. 11(c). The prediction error
of RLS in experiment is obviously larger compared with the
results shown in the simulation. Moreover, the prediction error
with RLS clearly increases during the transition of different
stages, while the transition cannot even be distinguished from
the result of SMRLS and the average prediction error remains
within 0.1rad(6◦) after the second cycle.

SMRLS settles the assistance after the first six steps during
the first transition (after 33 s) and the interaction torque begins
to provide assistance, while the results with RLS still cannot
settle even when it approaches the first return to the initial
motion pattern. The overall direction of assistance leans toward
the forward direction as the prediction still reaches higher
angle, resembling the motion of CS instead of LW. Similarly,
during the first transition back to CS stage, it fails to converge
effectively, while SMRLS generally converges after three steps

(after 44 s). Similar results also can be found in second
transition into the LW stage.

In addition, when using RLS for the second transition into
CS stage, a noticeable reduction in the maximum amplitude
of the subject’s leg lift can be observed compared with
results using SMRLS, which means this method affects the
subject’s native motion rather than providing assistance in turn.
In this case, the subject will subconsciously lean the torso
backward during walking according to our experiments. It is
also clear that the subject tried to resist this poor assistance and
exerted additional effort to correct this error, preventing it from
persistently affecting subsequent training as flawed samples.
It however results in an overall bias of assistance toward the
backwards direction, causing the assistance to respond more
rapidly with negative torque during the leg-lifting phase as the
resistance, similar to the drawback of admittance control. It
will produce worse assistance if the subject tended to fix it. In
other words, the subject must either tolerate the inappropriate
alterations imposed by the LLE or exert additional effort to
correct this issue.

C. Assistance Rate

In this experiment, the assistance rate (AR) is introduced to
quantify the proportion of correctly assisted movements using
different control methods. If the direction of the interaction
torque aligns with the corresponding theoretical direction men-
tioned above, it is considered beneficial assistance. Therefore,
the correct assistance can be defined as follows, in the context
of CS stages: 0%–100% for the leg lifting stage (positive),
0%–100% for the leg lowering stage (negative). For LW
stages: 0-20% and 85%–100% for the backward swing phase
and 0%–100% for the forward swing phase (positive), and
20%–100% for the backward swing phase (negative). Hence
20% is set as the standard in this article. However, a certain
phase difference of 10% is allowed between the interaction
torque and the ideal point. When the phase is leading, it can
be regarded as the exoskeleton providing a torque resisting
inertial effects and altering the current state. When the phase
is lagging, it can be regarded as the exoskeleton following
the user’s intent and providing assistance. Both forms con-
tribute successfully to providing assistance. Due to significant
uncertainty and disturbances in the data, segmentation of each
stage will be marked manually. According to [43], the stance
phase (where the foot is in contact with the ground) averagely
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Fig. 11. Example of results of SMRLS and RLS with ETC. Each figure depicts results from the first transition to the LW stage to the second transition. The
CS and LW stages are highlighted by different colors, while peak trends are illustrated respectively as well. (a) Results using SMRLS. (b) Results using RLS.
(c) Prediction error of SMRLS and RLS in example segments, where translucent curves show the raw data while opaque curves show the data processed by
filter.

Fig. 12. Ideal assistance for AR used in this article.

occupies 62% (time) of a single gait cycle. Hence, more
torque should be directed forward during ordinary walking.
In this circumstance, the ideal assistance should resemble that
depicted in Fig. 12.

Fig. 13, which is from [43] and [44], presents a data
example of hip joint angles and torques within one gait
cycle during normal human walking (LW stage) according
to the clinical gait analysis. Although there exists a slight
discrepancy between the definition of AR and the provided
example, the curve trend of the defined AR and curves of
experiment results presented below are generally consistent

Fig. 13. Example relationship between human hip joint angles and torques
during a gait cycle of the LW stage from [43] and [44], where the unit of
Nm/kg indicates the exerted torque divided by the body mass.

with it, which confirms the rationality of comparisons in this
article.

An example of how AR is calculated in weaker assistance
condition is presented in Fig. 14, where the moment of
reversal of the interaction torque has been marked on the
respective trajectory. Evidently, ETC provides more segments
of appropriate assistance (green segments) according to AR
compared with admittance control as the interaction torque
with the admittance control decreases earlier while legs are
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Fig. 14. Comparison of different control methods in lower assistance parameters. The appropriateness of assistance is judged by the defined AR. (a) ETC-CS.
(b) ETC-LW. (c) Admittance control-CS. (d) Admittance control-LW. (e) PD − CS. (f) PD − LW.

still lifting. The desired position and velocity qde and q̇de

are easily changed by a smaller torque as the ahead angle
and angular velocity of prediction decrease with invariant
parameters in admittance control, even though this magni-
tude of torque is necessary for assistance. Although PD
control has better AR, it cannot even provide assistance in
a larger assistance condition as shown in Fig. 10, which
means the good performance of the PD control is occasional.
In addition, low PD parameters lead to low upper-limit of
assistance torque, while the torque for assistance usually
requires a greater margin for the other control methods.
For example, it already restricts the maximum assistance
torque of ETC in such condition though ETC still performs
well.

Eventually, AR of different experiments above is summa-
rized in Fig. 15, which is calculated from 30 s after the
operation. It shows that ETC produces more proper assistance
compared with admittance control. Although PD controller
performs well in lower assistance, it cannot work in higher
assistance, which is thus not included in Fig. 15.

For ordinary walking, the movement of human legs is
largely influenced by inertia and gravity. Therefore, a sig-
nificant portion of human effort is dedicated to maintaining
standing balance [44]. This is also achieved through the knee
and ankle joints. According to the subject, they experience
significant assistance when support is provided during the
intermediate phase of forward swing and the initial moments
of ground contact. In other stages, even if the assistance
direction differs from the AR definition above, the subject does

Fig. 15. AR in experiments with different methods, where (high) and (low)
represent the experiment with different assistance levels respectively. ETC,
admittance control and PD all use SMRLS except RLS. The data of PD (low)
is not displayed as it cannot work.

not experience a noticeable impact as long as the resistance is
not very large.

AR in this article only considers the direction of torque
without the magnitude. For instance, in Fig. 9(a), the
interaction with admittance control is apparently unstable,
but it will not show much difference in AR. Therefore, AR
generally proves that ETC and SMRLS are better than the
other methods, but there are still many merits which cannot
be intuitively observed through the current results.
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VII. CONCLUSION AND DISCUSSION

This article proposes a walking assistance strategy with real-
time learning based on SMRLS-RBFNN. A control policy
ETC is derived to balance the interaction torque using the
prediction of trajectory in order to achieve more stable and
controllable assistance. In contrast to many existing methods
that rely on offline learning, such as sim2real [13], the strat-
egy proposed does not use classifiers for high-level control.
Instead, it achieves enhanced adaptability through optimization
of neural network training methods. Moreover, compared to
many complex real-time learning methods [16], the setting and
neural network structure involved in this strategy are relatively
simple. This simplicity significantly reduces data processing
time, thereby greatly enhancing control and communication
frequencies which are crucial factors for real-time learning and
assistance. According to further tests, SMRLS-RBFNN can
not only operate in the standard 5V/4A power supply mode
of Jetson Nano, but also in a low-power mode of 5 V/2 A.

In simulations, comparisons are made with other trajectory
prediction methods which do not rely on neural networks.
These include methods based on a fixed model with external
optimization (KF) and methods involving continuous training
with iterative and recursive properties (ILC). The proposed
strategy in this article demonstrates superior adaptability
compared with other methods in addressing specific sce-
narios. Comparisons are also made with the classical RLS
method in both simulation and experiment. The results confirm
that SMRLS-RBFNN demonstrates enhanced adaptability to
previously trained data and superior generalization. It con-
verges more rapidly with variations in the motion period.
Although this article focuses on the scenario of ascending
stairs to highlight the adaptability of nested cycles and
better convergence during real-time learning, the proposed
approach is not limited to this context. Although the gait ahead
prediction method may not be applicable to scenarios requiring
individuals to perform negative work, such as descending
stairs, where resistance against leg weight or maintaining
balance is necessary, it can still facilitate an increase in the
human’s step frequency as augmentation. The definition of
AR is based on the assumption of ideal situations, but the
experiment results are generally consistent with results from
the gait analysis in the literature, such as [43] and [44].

Although the assistance torque in the experiment is limited
within 5 Nm by ETC parameter τi0, the proposed method
can provide assistance far exceeding this value. It is worth
noting that the required assistance torque can exceed the
suitable interaction torque when switching the motion pattern.
However, ETC with the fixed parameter τi0, used as a thresh-
old for switching of motion patterns, also limits maximum
assistance torque. One solution is to set the upper and lower
bounds of τi0 and adjust it based on motion trajectory stability,
which can be a potential direction for future research. For
example, as the human motion trajectory stabilizes, τi0 can
gradually increase to its upper-limit. Although this method
may also work in different control laws compared in this
article for balancing interventions from the LLE, ETC’s
advantages still remain, including intuitive parameter tuning

and stable assistance. Moreover, as the threshold, fluctuations
in τi0 during the adaptive process are unlikely to significantly
affect assistance, unlike direct adjustments to the admittance
coefficient or PD parameters, which may lead to instability.

In addition, the proposed method can also be used in
other application scenarios of human-robot interaction, such as
upper limb movement assistance or collaborative manipulators.
Actually, the ILC method that is used for comparison in the
simulation section has been applied to corresponding scenarios
in [41]. The proposed method in this article particularly
works for real-time learning with periodic variations, thus
rehabilitation can also be a potential scenario [45].
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